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Remarks

ANIMATE!

1. perfect-information game

2. More than one cops can be at the same vertex.

3. Robber cannot jump over a cop.

4. Moves are deterministic.

5. When describing a strategy for the cops, we assume the
robber is clever; and vice versa.

6. Interested in minimum number of cops to guarantee
capture.
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What’s known

X On a path/complete graph one cop suffices.

X On a cycle/grid, two cops suffice (bus problem).

X On a planar graph, three cops suffice. [Aigner,Fromme’84]

X Meyniel conjectured L
√
n cops suffice for any graph.

[Frankl’87]
We don’t have a proof that n0.99 cops suffice for all graphs!
n : number of vertices

X On a random graph L
√
n cops suffice with high prob.

[Prałat,Wormald’15]



The fast robber variant

ANIMATE!

Definition (The Game of Cops and Robber)

X In the beginning,
� First, each cop chooses a starting vertex.
� Then, the robber chooses a starting vertex.

X In each round,
� First, each cop chooses to stay or go to an adjacent vertex.
� Then, the robber chooses to stay, or move along a cop-free

path.

X The cops capture the robber if, at some moment, a cop is at the
same vertex with the robber.

X Cop number of G = c(G)
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What’s known

X On a path/tree/complete graph one cop suffices.

X On a cycle two cops suffice.

X On an m ×m grid, m cops are necessary and sufficient
(bus problem).

X Computing c(G) is NP-hard.
[Fomin, Golovach, Kratochvíl’08]

X For every n , there exists a graph with c(G) = Θ (n).
[Frieze, Krivelevich, Loh’12]

Today we study cop numbers of bounded-degree and random
graphs.
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Dominating Set

N (S) := (closed) neighbourhood of set S
A is dominating set : N (A) = V (G)

Example

c(G) ≤ γ(G) = size of a minimum dominating set
(will be used for bounding cop number of random graphs)
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Tree decompositions

1. for every edge of graph there is a bag of tree containing
both endpoints.

2. Each vertex of graph induces a connected subtree in the
tree.



Tree decompositions: treewidth

Width = maximum size of a bag −1 = 2
tw(G) = minimum width of a tree decomposition for G
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Examples of treewidth

Example

1. Treewidth of a complete graph is n − 1

2. Treewidth of a planar graph is ≤ L
√
n

3. Treewidth of the m ×m grid is m



The Relation Between Cop Number and Treewidth

For any G, c(G) ≤ tw(G) + 1



Two easy upper bounds

For any graph G we have

c(G) ≤ min{γ(G), tw(G) + 1}

Is any of these tight?

tw(G) = n
2 − 1, γ(G) ≥ n/6
c(G) = 1
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Our main result

Theorem (Alon, M’15)
For any G

tw(G) + 1
∆(G) + 1

≤ c(G) ≤ tw(G) + 1

There exists a constant λ > 0 such that for a random graph
G = G(n , p), with high probability,

λγ(G) ≤ c(G) ≤ γ(G)

The two easy upper bounds are tight up to a constant factor,
for two important classes of graphs.
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Bounded-degree graphs

tw(G) + 1
∆(G) + 1

≤ c(G) ≤ tw(G) + 1



Helicopter Cops and Robber Game

X A continuous-time game.

X At any moment, the robber is at a vertex.

X At any moment, each cop is either standing at a vertex, or
in a helicopter.

X The cops want to land via a helicopter on the robber’s
vertex.

X The robber can see the helicopter approaching its landing
spot, and may run along a cop-free path to a new vertex.

In a complete graph, n cops are needed.
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A Lower Bound for Cop Number

Theorem (Seymour and Thomas’93)
Exactly tw(G) + 1 cops are needed to capture the robber in
the Helicopter Cops and Robber game.

Claim: if k cops can succeed in our game, k(∆+ 1) cops can
succeed in Helicopter game.
Punchline: if the robber can spy on cops,
number of required cops is at most multiplied by ∆+ 1.
Hence:

(∆+ 1)c(G) ≥ tw(G) + 1
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What we’ve proved so far

Proposition
For any graph G we have

tw(G) + 1
∆(G) + 1

≤ c(G) ≤ tw(G) + 1

Complete graph: treewidth = max. degree = n − 1.

c(G) = m ; for m ≥ 4, tw(G) = m − 1



What we’ve proved so far

Proposition
For any graph G we have

tw(G) + 1
∆(G) + 1

≤ c(G) ≤ tw(G) + 1

Complete graph: treewidth = max. degree = n − 1.

c(G) = m ; for m ≥ 4, tw(G) = m − 1



What we’ve proved so far

Proposition
For any graph G we have

tw(G) + 1
∆(G) + 1

≤ c(G) ≤ tw(G) + 1

c(G) = m ; for m ≥ 4, tw(G) = m − 1



Random graphs



The Random graph model

Definition
G(n , p) is a random graph on n vertices,
each edge appears in G(n , p) with probability p
(p can depend on n).
For a graph property A, we say G(n , p) asymptotically almost
surely (a.a.s.) satisfies A, if

lim
n→∞Pr [G(n , p) satisfies A] = 1

We will show that for any p = p(n), G(n , p) a.a.s. satisfies

λγ(G) ≤ c(G) ≤ γ(G)
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The “small p” case

We will show that for any p = p(n), G(n , p) a.a.s. satisfies

λγ(G) ≤ c(G) ≤ γ(G)

Different arguments for different ranges of p:
First, suppose p = L/n for a constant L

Probability a given vertex is isolated = (1− p)n−1 ≈ e−pn

Expected number of isolated vertices ≈ ne−pn = ne−L

It can be shown that a.a.s. number of isolated vertices ≥ ne−L/2

γ(G) ≥ c(G) ≥ number of isolated vertices ≥ ne−L/2 ≥ γ(G)e−L/2

Next we analyze the case 1
n � p, i.e. pn → ∞
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Main lemma for random graphs

Lemma
Suppose d := pn → ∞ as n → ∞. For any fixed ε > 0 we
have

(1− ε)
ln(d)
d
× n < c(G) ≤ γ(G) < (1+ ε)

ln(d)
d
× n



Escaping strategy for the robber

N (S) := (closed) neighbourhood of S

N (S)

C

N (S ′)

Invariant: Robber in largest component of G −N (S)
S = cops’ position

Invariant: Robber in largest component of G −N (S ′)

S ′ = cops’ position
Need 2 things:
(1) if S is small, largest component of G −N (S) is big,
(2) and there is an edge between any two big subsets of vertices
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Lower bound for cop number of random graphs

Principle: a.a.s. for all large sets X , |V (G) \N (X )| is very
close to its expected value = (1− p)|S | ≈ e−p|S |.

Set b := en ln d/d .
Fact 1: a.a.s. any two subsets of size b are joined by an edge.
Bus problem: if you have some numbers summing to ≥ 3b, one
of the following is true:
one of them is at least b,
or you can partition them into two groups, each group summing
to ≥ b.
Hence, a.a.s. any set of vertices of size ≥ 3b has a connected
component of size ≥ b.

Fact 2: a.a.s. any S with |S | ≤ (1− ε)n ln d/d has
|V (G) \N (S)| ≥ 3b.
Therefore, c(G) > (1− ε)n ln d/d
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Upper bound for domination number of random graphs

Claim: for any graph G with minimum degree δ,

γ(G) ≤ 1+ ln δ
δ

× n

Proof uses the probabilistic method: choose each vertex with
probability q and put it in X .Then

γ(G) ≤ E [|X ∪ (V (G) \N (X ))|]

≤ E [|X |] + E [|V (G) \N (X )|] ≤ qn + (1− q)δn

Choosing q = ln(δ)/δ gives the claim.
An adaptation of this proof gives a.a.s.

γ(G(n , p)) < (1+ ε)
ln(d)
d
× n
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What we’ve proved for random graphs

Lemma
Suppose d := pn → ∞ as n → ∞. For any fixed ε > 0 we
have

(1− ε)
ln(d)
d
× n < c(G) ≤ γ(G) < (1+ ε)

ln(d)
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× n

Combining with the analysis for the constant d case, we
conclude the following.

Theorem (Alon, M’15)
There exists a constant λ > 0 such that for a random graph
G = G(n , p), asymptotically almost surely,

λγ(G) ≤ c(G) ≤ γ(G)



Conclusion



Summary of our results

Proposition (for all graphs)

tw(G) + 1
∆(G) + 1

≤ c(G) ≤ min{tw(G) + 1, γ(G)}

Theorem (for random graphs)
There exists a constant λ > 0 such that for a random graph
G = G(n , p), a.a.s.

λγ(G) ≤ c(G) ≤ γ(G)

Question: find other graph classes for which these upper bounds are
tight.
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Hypercube graph

1-cube 2-cube 3-cube

Proposition
For any graph G we have
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The d-cube graph has
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